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Lecture 3, 4

Agenda — Lecture 3, 4

Computational meshes (topology, density)

Mesh sensitivity

Numerical errors

Boundary conditions (BCs)

Discretization schemes of convective terms (1st order, 2nd order, ...)
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Lecture 3, 4

Mesh topology

o Most CFD codes use both, structured and unstructured meshes.

a) Structured
quadrilateral 2D
mesh (32 cells)
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b)

Unstructured
guadrilateral 2D mesh
(38 cells)

c)

Unstructured
triangular 2D mesh
(76 cells)



Lecture 3, 4

Mesh topology (2)

o Structured meshes consist of planar cells with 4 edges (2D) or volumetric cells with 6
faces (3D).

o Each cell is numbered according to indices (i, j, k).
o We can number intervals (cells) or nodes (not shown here).

o Unstructured meshes consist of cells of various shapes, but typically triangles or
quadrilaterals (2D) and tetrahedrons or hexahedrons (3D).

o Unlike structured meshes, one cannot uniquely identify cells by indices for
unstructured meshed.

o Instead, cells are numbered in some other way internally in the CFD code.

o A vast number of meshing methodologies exists.

FAKULTA STROINT TUL
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Mesh topology (3)

o Elements of a various shape are used: hexaheral, tetrahedral, polyhedral, wedge,

pyramids, ...
Quadrilateral ~ Triangle Hexahedron Hexahedron
(square) (cube) (skewed)
Quadrilateral Quadrilateral A X_
(trapezoid)  (rhombus) Pyramid  Tetrahedron
Polygon Polygon
yg Y9 Triangular Polyhedron

Pt ot 1L (heptagon) (pentagon) prism



Lecture 3, 4

Mesh topology (4)

o Fewer cells are usually generated for structured meshes than for unstructured
meshes.

o For complex geometries, unstructured meshes are usually much easier for the user to
create.

o Regardless of the type of mesh you use, it is the quality of the mesh that is most
important for reliable and meaningful CFD simulations.

o Cells must not be highly skewed or deformed, as this could lead to convergence
difficulties and inaccuracies in the simulation.

o Additionally, abrupt changes in cell size across the domain must also be avoided, so
the mesh should be as smooth and regular as possible (errors, stability).

o No holes, no overlapping cells, no negative volumes !!!

FAKULTA STROINT TUL



Lecture 3, 4

Mesh quality

o The quality of the mesh plays a significant role in the accuracy and stability of the
numerical simulation.

o Many different metrics exist for assessment mesh quality.

o For example, Equivalent Skewness (ES), Orthogonal Quality (OQ), Aspect Ratio
(AR), ...

o Regardless of the type of mesh used in your domain, checking the quality of your
mesh is essential.
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Lecture 3, 4

Equiangle Skewness

Zero skewness High skewness
Quadrilateral Quadrilateral
(perfect) (skewed)
1

Ocq = 90°
Triangle Triangle
(perfect) (skewed) <7'

Ooq = 60°

o Equiangle Skewness (ES):

ES = MAX (G)max - G)eq Oeq - Gmin>

180°— 0, O

o O and O,, are minimum and maximum angles in degrees between any two edges
of the cell (0 <ES < 1), where O is best and 1 is worst.
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Equiangle Skewness (2)

Zero skewness High skewness
Quadrilateral Quadrilateral
(perfect) (skewed)
1

Ocq = 90°
Triangle Triangle
(perfect) (skewed) <7

Ooq = 60°

o the maximum skewness for a tetrahedral mesh should be kept below 0.95.

o O Is the angle between any two edges of an ideal equilateral cell with the same

number of edges defined for N-sided polygon as:
180°(N — 2)

eq = N

FAKULTA STROINT TUL



Lecture 3, 4

Orthogonal Quality

O f.
Cy °
S
AZ
o Orthogonal Quality (OQ):

a7 E-a)

0Q = MIN | ——=-, ———
<|Ai||fi| I

o A; isthe area vector of a face.
o f;is avector from the centroid of the cell to the centroid of that face.

o ¢; Is a vector from the centroid of the cell to the centroid of the adjacent cell that
shares that face.
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Orthogonal Quality (2)

o 0<0Q<1,whereOisworstandlis best.

o The minimum orthogonal quality for all types of cells should be more than 0.01, with
an average value that is significantly higher.
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Lecture 3, 4

Aspect Ratio (1)

o Aspect Ratio (AR): Ap = Longest Side A
Shortest Side B

o AR is computed as the ratio of the maximum value to the minimum value of any of the
following distances: normal distances between the cell centroid and face centroids,
distances between the cell centroid and nodes, or faces enclosing the 3D element.

o lorl4l1<AR<« wherel(1.41)is bestand = is worst (not possible).

face centroid cell centroid Low Aspect Ratio High Aspect Ratio
Quadrilateral Quadrilateral
(perfect) (stretched out)

D Triangle Triangle
7 (perfect) (stretched OUtR
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Lecture 3, 4
Mesh quality — Best practices
o Cells with a very large aspect ratio may cause difficulties.
o The cell count can often be minimized by using a structured mesh.

o However, a structured mesh does not have to be always the best choice, depending
on the shape of the domain (geometry).

o A high-quality unstructured mesh is always better than a poor-quality structured mesh!

Structured
guadrilateral
mesh (64 cells)

Unstructured
triangular
mesh (70 cells)

Unstructured
quadrilateral
mesh (67 cells)

g Hybrid
(unstructured
and structured)
mesh (62 cells)
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Mesh density

o Since a real continuous domain is defined as discrete, the degree to which the
important features of the flow are resolved depends on the density and
distribution of mesh elements.

o Among such features belong shear layers, separated regions, shock waves, boundary
layers, and mixing zones.

o Poor resolution in critical regions can dramatically affect results!

o Resolution of the boundary layer plays a significant role in the accuracy of the
computed wall shear stress and heat transfer coefficient.
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Lecture 3, 4
Mesh density (2)
o Flow resolution ( 1 cell = 1 stored value of pressure, velocity, temperature, etc.)
o Accuracy vs. false diffusion

o Mesh sensitivity study (at least 3 meshes)

a) Coarse mesh b) Medium mesh c) Fine mesh
(5x5), 25 cells (50x50), 2,500 cells (100x100), 10,000 cells
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Lecture 3, 4

Mesh sensitivity study

o Influence of mesh density should be always investigated!
o We always look for a trade-off between accuracy and computational cost.

o Mesh sensitivity study is related to the domain discretization error.

16.93
1692 || meshno.1 Mesh 1 — 40,000 cells “Coarse”
16.91
16.90 Mesh 2 — 80,000 cells “Medium”
16.89
16.88 mesh no. 2 Mesh 3 — 320,000 cells “Fine”
16.87
16.86 mesh no. 3 mesh no. 4 Mesh 4 — 1,200,000 cells  “Very fine”

16.85 o -

Quantity of interest

16.84

00 02 04 06 08 10 12 14

Number of computational cells (millions)
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Errors in CFD simulations

o CFD simulation results always differ from its true or exact values.

o This difference is the error of the solution.

o The total error is always a sum of the following errors.

Classification of errors:

Physical modeling
Geometry modelling
Geometry discretization
Equation discretization
Round-off (computer)
Iterative convergence

o000 o

Computer programming

a
U Usage
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Lecture 3, 4

Errors in CFD simulations (2)
o CFD simulation results always differ from its true or exact values.
o This difference is the error of the solution.
o The total error is always a sum of the following errors.
Classification of errors:

Physical modeling
Geometry modelling
Geometry discretization L Acknowledged
Equation discretization
Round-off (computer)
Iterative convergence —
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Lecture 3, 4
Discretization Error
o The discretization error can be related to the domain, equations, and time domain.
Discretization error:

O Local error (0]
O Global error

Actual AE
solution! ™~ Numerical
| ' solution
"®o f | :
0 1 2 3 Cell number
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Round-Off Error

o This type of error would not exist if we had a computer that could retain an infinte
number of digits for all numbers.

o In that case, the numerical and the exact solution would be the same if we did not
consider any other types of error.

Round-off error: A computer in single precision using 7 significant digits:
a9 sinal o Given: a =1013251 Solution:
ngie-precision eror b = 1013250 D = 1013251 - 1013250 +
O Double-precision error
c = 0.5282817 +0.5282817

=1+0.5282817

=1.528281 t
Find: D=a-b+c (correct)

E=a+c-b E =1013251 + 0.5282817 +
- 1013250
=1013251 - 1013250
=1 (in error by 34.6%)
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Lecture 3, 4

Controling the total error

o Disregarding all other types of error and considering only the 2 aforementioned types,
we can combine them to get an optimum step size (Time step for transient problems).

o By doing so, we get a total error, as shown in the diagram below.

Error

Total error

d

Discretization
error

! Round-off
| error
1
1

Optimum Step size
FAKULTA STROJNI TUL step size Ax



Lecture 3, 4
Boundary conditions in CFD simulations
o Appropriate BCs are required to obtain an accurate results!
General BCs:
U Dirichlet BC (a value is specified)

U Neumann BC (a gradient is specified)
U Combined and special BC

Specific types of BCs:
Inlet

Wall BCs

Inflow/Outflow BCs
Internal BCs
Other (miscellaneous) BCs

Ooo0od
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Outlet
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Lecture 3, 4
Wall boundary conditions
o The simplest BCs.

o Fluid cannot pass through a wall, therefore the normal component of velocity is set to
zero (relative to the wall).

o If the no-slip condition is used, the tangential component of velocity is also set to zero.

o If the energy equation is being solved, either wall temperature or wall heat flux must
be defined (but not both).

o BCs for other transport equations must also be specified (e.g. turbulence).

Wall 1

¥

Inlet ynal domain Outlet
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Lecture 3, 4

Wall boundary conditions (2)

o We can also specify a zero-shear-stress along free surfaces to simulate an “inviscid”
wall.

o By using this, we can simulate a free surface of a swimming pool.
o But we suppress the waves on the free surface and associated pressure fluctuations.

o For turbulent flows, wall roughness may be specified by means of wall functions (the
law-of-the-wall).

Wall 1

Inlet nal domain Outlet

Wall 2
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Lecture 3, 4

Inflow/Outflow boundary conditions

o The boundaries through which a fluid enters (Inflow) or leaves (Outflow) the
computational domain.

Classification of Inflow/Outflow BCs:

U Velocity-specified BCs (velocity inlet, mass flow inlet, ...)
U Pressure-specified BCs (pressure inlet, pressure outlet, ...)
U Not specified BCs (outflow, ...)

o If the energy equation or other scalar equations (turbulence) are being solved, their
parameters must also be specified.
Wall 1

¥

Inlet ynal domain Outlet
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Lecture 3, 4
Internal boundary conditions
o DO NOT define a boundary of the computational domain.
o They are specified INSIDE the domain.
Classification of Internal BCs:

U Interior BCs (a flow crosses through the domain)
U Fan BCs (induce a pressure rise/drop across the domain)

Interior

Fan

FAKULTA STROINT TUL
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Lecture 3, 4
Symmetry and periodic boundary conditions
o They are neither walls nor inlets or outlets of the computational domain.
o They enforce some kind of periodicity or symmetry of the domain.
Classification of Symmetry/Periodic BCs:

U Periodic BCs (translational or rotational)
0 Symmetry BCs (a symmetry plane or axis for axisymmetric flows)
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Lecture 3, 4

Symmetry boundary conditions

Symmetry
(plane symmetric) > ca Symmetry 2 >
T Y - pod 1
Flow
Outlet
Axis
(axisymmetric) , _ \
Axisymmetric body —+
X Axis x
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Lecture 3, 4

Translational
periodic

Rotational
periodic
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Periodic boundary conditions

,,Y
Outlet
4
Pressure
Inlet Inner
cylinder
wall
Outer
cylinder Outlet

wall
Rotational

/yk periodic 1
z x  Rotational periodic 2
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Lecture 3, 4
Discretization schemes for convective terms
o Also known as interpolation schemes.
o Values are usually stored at cell centroids.
o For fluxes (gradients), we need values at cell faces.

o There are several options how to determine the cell face values.

[
: S
— ° f f °
1 P
° P N
/)—
e Owner Owner Neighbour

cell cell
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Lecture 3, 4
Discretization schemes for convective terms (2)
o Face values of U (Uf) are found by using an appropriate scheme.

o Assumption about variation of U between 2 cell centers.

Most often used schemes for convective terms:

First-Order Upwind
Second-Order Upwind
Central Differencing (linear interpolation)

a
a
a
U QUICK (Quadratic Upstream Interpolation for Convective Kinematics)
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Lecture 3, 4

o The simplest numerical scheme.

First-Order Upwind Scheme

o Value of U at the face is the same as the value at the cell centre UPSTREAM the face

(DIRECTION-DEPENDENT !)

o [Easy to implement and results in very stable calculations.

o Very diffusive, gradients in the flow field are usually smeared out.
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Interpolated
o Best scheme for the beginning of a calculation. ~ ¥¢

U, \Uﬂ:UL
o

Interpolated

value

U Up=Up
o—@

/N . h uLn
Py eighbour

ﬂI‘IPi

Owner

Neighbour "R"

Flow direction

—>
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Lecture 3, 4

Second-Order Upwind Scheme

o Value of U at the face from the cell centroid value and its gradient upstream the face.

o More accurate than First-Order Upwind (also DIRECTION-DEPENDENT !).

o In regions with strong gradients can results in face values that are outside of the

range of cell values (limiters may be applied).

o Popular scheme for its trade-off between accuracy and stability.
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Up=U+(VU)|L Al
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Up = Upt(VU)p|P fr|
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Lecture 3, 4

Central-Differencing Scheme

o Value of U at the face by linear interpolation between the cell upstream and

downstream.

o More accurate than First-Order Upwind.

o May lead to oscillations in the solution (divergence) if the local Peclet number is larger

than 2.

o Possible to switch to First-Order Upwind in cells where Peclet number is greater than

2 (hybrid scheme).
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Uy =a *U.+az*Up

Interpolated

value \ value
U, M Uy

Up

Uy, = ap*Up + ag*Uy
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Lecture 3, 4
Accuracy and False Diffusion
o We always try to find a trade-off between accuracy and computational time costs.
o Sometimes a less accurate solution can show us important trends in a short time.
o Aless accurate solution is often used as a starting point for a more accurate solution.

o As an example, consider the following problem: Outflow
Cold

2 parallel streams moving at the same
velocity but at a different temperature.

Cold Air (15
Inflow

N

4

Hot Air (30°)
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Accuracy and False Diffusion (2)

1st Order Upwind 2nd Order Upwind
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Coarse 20x20
(400 cells)

Fine 100 x 100
(10000 cells)
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Summary
o Mesh topology and density play a crucial role
o Mesh sensitivity study (discretization error)
o Numerical errors in the final solution
o Boundary conditions

o Discretization schemes of convective terms (accuracy vs. time cost)
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Thank Youl!



